Archive for the 'Research' Category

SNI Communication Tools

John W. Henson, MD, Swedish Neuroscience Institute     

 

SNI is leveraging communication tools that deliver information to patients, referring physicians and the public as a crucial part of providing care at the advancing edge of neu­rological knowledge. The goals of these tools are two-fold. One goal is to update established patients and their doctors regarding the latest developments in our programs and centers. The other is to lower the barrier for patients and physicians who are facing a new neuro­logical problem to discover tertiary subspe­cialty care.

A new SNI communication tool

Dan Rizzuto, Ph.D., director of SNI research, and John Henson, M.D., recently launched SNIblog.com to complement other commu­nication efforts and to provide a communication outlet for the staff of SNI. SNIblog.com offers brief notes about advances in neurological care provided in SNI’s centers, as well as news items about the institute that are of interest to our patients and referring physicians.

Blog content is more dynamic than Web content. Search engines are able to detect targeted key words within each entry, which helps direct highly relevant Web traffic to the blog. This aids in the dissemination of infor­mation to patients and physicians. Viewers also can subscribe to an e-mail notification system that will alert them to newly posted material.

As is the case with any communication tool, however, blogs also have limitations. For example, blogs are not able to incorpo­rate the interactive features of social media that exponentiate information transfer to a selected audience. Therefore, SNI will build upon its existing menu of communication tools by launching social media outlets in the near future.

Other SNI communication tools

At SNI we provide print and electronic options to meet the needs of various audi­ences.

BrainWaves. This print news letter is de­signed to be an educa­tional resource about neurological topics for physicians in thePacific Northwest. Each issue focuses on conditions treated at SNI. Staff members au­thor the articles.

Physicians Practice. Swedish has the exclu­sive contract with this practice management journal to customize content in six issues annually. Although the journal is not exclu­sively used for SNI in­formation, many neu­rological topics have been covered in recent issues. Swedish maintains an online library of past content in the Health Professionals sec­tion of its website at www.swedish.org.

Swedish Neuroscience Institute website. Earlier this year the SNI website took on a new look as part of a project to redesign the entireSwedishMedicalCenter website. SNI members are now able to directly update information about their programs, and are actively developing online patient resources for each of SNI’s programs. The SNI website is a repository of information about our neurological services, research, clin­ical trials and professional expertise.

Our goal is to continuously improve ac­cess to neurological information and the de­livery of that information to interested groups of patients and referring physicians.

Advertisements

Detecting cerebral microemboli with transcranial doppler.

 

David W. Newell, MDCerebrovascular Surgery, Neurosurgery, Swedish Neuroscience Institute 

 

 

 

 

Colleen Douville, RVT, Director, Cerebrovascular Ultrasound, Swedish Neuroscience Institute

 

 

Since its introduction in 1982, transcranial doppler ultrasound (TCD) has evolved into a por­table, multimodality, noninvasive method for real-time imaging of intracranial vasculature.

The detection of cerebral microemboli is among the more remarkable capabilities of TCD. Emboli create countable signals in the ultrasound display due to the higher reflection of sound waves compared to the blood cells. Experimental mod­els have shown a high sensitivity and specificity for detection of a variety of substrates, including thrombotic, platelet and atheromatous emboli.

Microembolic signals (MES) within the in­tracranial vasculature are most frequently identi­fied in patients with large-vessel atherosclerotic disease, such as carotid stenosis. They have also been reported in intracranial arterial stenosis, ar­terial dissection, cardiac disease and atheroaortic plaque. Additionally, they have been seen in arter­ies distal to coiled aneurysms.

There is strong evidence that MES detection predicts future ipsilateral stroke risk in patients with symptomatic carotid stenosis (Markus HS, et al.; King A, et al.). A recent study of patients with asymptomatic carotid stenosis demonstrated that MES predicted subsequent ipsilateral stroke and TIA, and also ipsilateral stroke alone, and that it is helpful in selecting patients who will benefit from carotid endarterectomy (Markus, HS et al.).

Identification of active embolization provides crucial patho­physiological information to the neurologist and can also aid in the selection of tailored therapy aimed at reducing the risk of stroke. Emboli from different sources have unique compositions and re­quire specific therapy, such as antiplatelet agents for emboli from large artery atherosclerotic plaque and anticoagulants for cardiac emboli.

Future advances in TCD technology will permit full automa­tion and better identification of the composition and size of circu­lating embolic materials, thus improving its value for patients with cerebrovascular disease.

Contact Colleen Douville, RVT, at colleen.douville@swedish.org or 206-320-4080, for more information about TCD for detec­tion of cerebral microemboli.

 

PFO closure for migraine

Mark Reisman, MD, Director of Cardiovascular Research and Education

 

Migraine is a primary headache dis­order that causes significant suffering in approximately 13 percent of the popula­tion of the United States. It accounts for an estimated $23 billion in annual cost to the economy through health-care expenses and lost productivity.

Two major features of migraine are migraine aura (MA) and headache. MA occurs in nearly one-third of migraine pa­tients and consists of one or more focal neurological symptoms that develop gradually over 5-20 minutes and persist for less than 60 minutes. MA typically precedes development of migraine headache.

Several years ago single-center retrospective analyses first reported an apparent association between partial or complete relief of migraine symptoms and transcatheter clo­sure of patent foramen ovale (PFO) for secondary stroke prevention (Reisman M, et al., 2005). The fora­men ovale normally serves as a one-way valve in the interatrial septum for physiologic right-to-left shunt in utero. Complete fusion of interatrial septae normally occurs by two years of age. When septae fail to fuse, how­ever, the PFO is a potential tunnel that can be opened by reversal of the interatrial pressure gradient. PFO is the most common form of right-to-left circulatory shunt (RLS).

Studies have shown that as many as 50 percent of individuals with MA will have a PFO, whereas PFO is present in about 25 percent of the general population and in migraineurs without aura (MO). In analy­ses performed by Swedish researchers, MA patients had a larger RLS than patients with MO, despite similar interatrial anat­omy (Jesurum JT, et al., 2007), and were about 4.5 times more likely to have greater than 50 percent reduction in migraine fre­quency following PFO closure (Jesurum JT, et al., 2008). These observations indicated a potential pathophysiological relationship between migraine and PFO.

The mechanism for this potential re­lationship is not understood, but investi­gators have focused on possible interatrial transit of vasoactive chemicals that bypass the pulmonary capillary bed, or on micro­emboli from the venous circulation which might trigger cortical spreading depres­sion and transient regional hypoperfu­sion. Migraineurs may have higher plate­let reactivity (Jesurum JT et al., 2010) or pro-coagulant state (e.g., protein C or S deficiency) than non-migraineurs, possibly resulting in greater load of microemboli in the arterial circula­tion. The brains of migraineurs may be more sensitive to circulatory changes than are the brains of those without migraine. The combination of potential triggers and susceptible neuronal substrate may result in an enhanced risk of MA among pa­tients with PFO.

The Migraine Intervention with STARFlex Technology (MIST) trial was a randomized trial of PFO clo­sure in migraine (Dowson A et al.). The failure of the trial to meet its primary endpoint (cessation of headache) and secondary endpoint (>50-percent re­duction in headache frequency and days) was surprising. Eligibility criteria for the trial may have excluded those patients who were most likely to benefit from PFO clo­sure. For instance, patients were excluded from MIST if they had a history of stroke or hypercoagulability, and subjects had to fit within a narrow range of headache fre­quency. If patients with a greater migraine burden or hypercoagulability were more likely to achieve meaningful reductions in headache frequency and severity, these exclusion cri­teria could have altered the study outcome.

Other trials are in progress or in the pipeline that may better elu­cidate the effect of PFO closure on migraine. The migraine-PFO asso­ciation offers opportunities for col­laboration between scientists and clinicians in both neurology and cardiology. The long-term goals of collaborative trials are improved quality of life and reduced cerebro­vascular sequelae for individuals who suffer from migraine.

 

Emerging concepts in vascular neurology: TIA clinics help prevent strokes and unnecessary hospital admissions

Michael Fruin, ARNP, Swedish Neuroscience Institute

Tom Jaspee placed an anxious call to Dr. Lewis’s office at 9 a.m. sharp. He didn’t give many details, other than to say his wife was worried about problems he was having with his speech the previous night. Later that morning in Dr. Lewis’s office, Tom said he had trouble getting his thoughts out for a few minutes. He said he felt fine im­mediately afterwards and didn’t want to raise a ruckus. Tom’s wife added that his right face drooped and the episode took al­most 30 minutes to clear up. She was wor­ried that Tom had suffered a stroke.

Dr. Lewis was well aware of Tom’s high risk of stroke following his transient isch­emic attack (TIA). Realizing that he could not manage this urgent issue in his office, Dr. Lewis sent the patient to the emergency room and after a six-hour stay, Tom was admitted as an inpatient for a 24-hour ob­servation and evaluation.

This mock case study highlights the role a TIA clinic might have played in avoiding an emergency room visit and hos­pitalization, while still providing the TIA patient the necessary urgent care.

While hospital admission is appropri­ate for the subset of patients at high risk for having a stroke after TIA, significant num­bers of emergency room visits and admis­sions could be avoided by a recent advance in evaluating patients in a TIA clinic. TIA clinics are being pioneered in the United Kingdom, where patients with TIA can be seen by a stroke specialist in an urgent-care clinic setting in which a standardized pro­tocol of neurologic evaluation and diagnos­tic testing is administered.

The effectiveness of the TIA clinic is supported by findings from the EXPRESS Trial (Luengo-Fernandez R, et al.). In this trial, there was an 80 percent reduction of 90-day stroke risk when TIA and minor stroke patients received urgent evaluation and treatment in a standardized urgent-care clinic setting. Patients at high risk of stroke, such as those with high-grade ste­nosis of the internal carotid artery or with atrial fibrillation, are admitted to the neurology service as indicted. Patients at low risk of stroke receive patient education and a stroke prevention plan is implemented.

Reference

Luengo-Fernandez R, Gray AM, Rothwell PM. “Effect of urgent treatment for transient ischaemic attack and minor stroke on disability and hospital costs (EXPRESS study): a prospective population-based sequential comparison.” Lancet Neurology 8:235-243. 2009.

.

Winter Issue of BrainWaves Now Available

The Winter 2010 edition of BrainWaves is now available online.  

BrainWaves is the newsletter of the Swedish Neuroscience Institute. Published quarterly, BrainWaves provides information about neurological conditions treated at the Institute, and also profiles the programs, services, and new initiatives of the institute and its staff.

 

Also check out our past editions of the BrainWaves newsletter.

FDA Approves First Oral Medication for MS

Dr Lily Jung, Medical Director of General Neurology, Swedish Neuroscience Institute

This week the US Food and Drug Administration approved the release of fingolimod (trade name Gilenya®), the first oral medication for the treatment of remitting relapsing multiple sclerosis. Swedish Neuroscience Institute is proud to have participated in the pivotal clinical trial that led to the approval of Gilenya.

Gilenya is a welcome addition to the set of medications available to patients living with MS. There are currently five injectable therapies and two intravenous therapies approved by the FDA for the treatment of MS. Although these treatments are very effective, many patients have been hoping for an oral alternative. Some patients are finding that they have “injection fatigue” or are running out of places to inject the medication.

It is important to note, however, that not all patients should switch to Gilenya. Patients with stable disease should remain on their medications. Patients need to be informed of the risks associated with Gilenya, including slowed heart rate, increased blood pressure, difficulty breathing, abnormal liver function, and infection, and how these risks may apply to them.

If you are wondering whether Gilenya is right for you, please ask your neurologist.

Swedish Summer Research Program a Success

On August 12, 2010 six undergraduate and three high-school students completed the 2010 Swedish Summer Research Program. This program is now in its second year and was led by Dr. Dan Rizzuto, Research Manager at Swedish Neuroscience Institute (SNI) and Dr. John Henson, Director of Neurology at SNI. The 10 week program included training in research ethics and basic neurology as well as weekly seminars from SNI physicians. Each student was also assigned to a research project and individually mentored by the physician investigator leading the research. The program was roundly considered a success by all participants. Of note, one participant and his mentor wrote a manuscript, entitled “The Impact of Electroconvulsive Therapy on Visuospatial Navigation and Memory”, which was submitted to the Journal of ECT.

Special thanks to all of the Swedish project mentors: Dr. Annabaker Garber, Dr. Mike Doherty, Dr. Jim Bowen, Dr. Bart Keogh, Dr. Ken Melman, Dr. Greg Foltz, Dr. Jill Jesurum, Dr. Cindy Fuller, Dr. Nameeta Shah, Dr. John Henson, and Dr. Philip Mease.

We will begin accepting applications in March for the Summer 2011 program. Stay tuned for further details.